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Abstract
Sequential recommendation aims to learn users’ dynamic prefer-

ences from their historical interactions and predict the next item

they are most likely to engage with. In real-world scenarios, time-

varying factors (e.g., product promotions, seasonal changes) induce

distribution shifts in user interactions. Despite the demonstrated

success of existing models, their generalization capability remains

limited under such dynamic conditions. Current methods tackle

this challenge by leveraging distributionally robust optimization

(DRO) to optimize the "worst-case" loss or by employing manu-

ally designed data augmentation to enrich the training distribution.

Despite their effectiveness, DRO-based approaches are inherently

constrained by the sparsity of training data, limiting the range of

distributions they can model, while manually designed augmenta-

tions risk introducing noise or irrelevant information that could

distort user preference learning. Furthermore, these methods often

overlook the sensitivity of user interactions to distribution shifts,

which is essential for capturing the stable factors in the evolution

of user preferences in real-world settings.

In this work, we tackle the distribution shifting problem from

the perspective of invariant learning. We propose a novel frame-

work called Invariant Learning for Distribution Shifts in SEquential
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RecommendAtion (IDEA) to develop robust sequential recommen-

dation. The key of IDEA lies on learning stable preferences across

various distribution-aware environments. Since explicit environ-

ments are unavailable, we first extract multiple subsequences by

dropping potential noise items, then extend environments with our

proposed subsequence mixup. Given the simulated environments,

IDEA then learns stable user preferences through invariant risk

minimization (IRM) across various environments. To encourage the

diversity of simulated environments, IDEA employs an adversarial

training strategy to explore potential diverse environments, and

further enhance the model’s generalization to unseen test distribu-

tions. It is worth mentioning that IDEA is a flexible model-agnostic

framework, which is applicable to various sequential recommenda-

tion models. Extensive experimental results on three public datasets

clearly demonstrate the effectiveness of the proposed framework.

Our code is available at: https://github.com/hermione314/IDEA.
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1 Introduction
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Figure 1: Illustration of real-world distribution shifts. Solid
boxes indicate user interaction sequences while dashed boxes
indicate item popularity. (a) and (b) indicate event-driven
factor(the World Cup). (c) and (d) present time-varying fac-
tors(the seasonal changes).

preferences [9, 13, 29, 39, 47]. As a cornerstone of personalized

online services, sequential recommendation systems enhance user

experiences by predicting future interactions based on past behav-

iors. With the development of deep learning, increasingly advanced

architectures have been successfully applied to sequential recom-

mendation models, such as CNNs [37], RNNs [19], GNNs [6], self-

attentionmechanisms [23, 36] and selective state-space-models [25],

effectively capturing intricate user behavior patterns, achieving ad-

vanced performance.

Although the models mentioned above have achieved consider-

able success, most assume that users’ historical and future inter-

actions follow the same distribution, i.e. the IID assumption [14].

However, this idealized assumption hardly holds in real-world sce-

narios, as users’ interests evolve dynamically over time and in re-

sponse to varying contexts. Certain interactions of users are highly

sensitive to time-dependent or event-driven factors. As illustrated

in Figure 1, during the World Cup (Figure 1 (a)), users typically buy

football jerseys to support their favorite teams, but the demand

significantly decreases once the tournament concludes (Figure 1

(b)). Meanwhile, in summer (Figure 1 (c)), users tend to purchase

T-shirts and shorts to keep cool. However, this fashion trend shifts

in winter (Figure 1 (d)). These types of interactions are sensitive

to distribution shifts. Models based on the IID assumption may be

disproportionately influenced by such interactions, overfitting on

short-term trends [4, 5], thus struggling to generalize effectively in

distribution shifts [7].

To mitigate the performance degradation of sequential recom-

mendation caused by distribution shifts, previous work has made

significant efforts by employing techniques such as distribution-

ally robust optimization (DRO) [32, 50, 52], uncertainty model-

ing [11, 12], and contrastive learning [8, 46]. While these methods

have advanced sequential recommendation generalization, they

have certain limitations: (i) DRO-based methods heavily rely on

identifying the worst distribution. RSR [52] treats the worst dis-

tribution as the subdistribution with the highest loss, which may

overemphasize high-loss, potentially noisy samples. DROS [50] de-

fines robust optimization within a certain shift from the nominal

distribution, potentially leading to overly conservative solutions.

(ii) Uncertainty modeling methods use uncertainty to model possi-

ble changes in user interest, but lack causal explanation [43]. (iii)
Contrastive learning-based methods often rely on arbitrary data

augmentation, which may drop important interaction data and re-

tain noise information, misleading user preference modeling [27].

To ensure model generalization under distribution shifts, it is

crucial to increase attention on items that users consistently inter-

act with across diverse distributions, reflecting stable preferences.

If we can learn users’ stable preferences from the reconstructed

training distribution, this issue can be readily resolved. Invariant

learning is an effective technique to tackle domain generalization

challenges by learning invariant representations that can trans-

fer across diverse environments, or intervention distributions [34].

Since explicit environment labels are not available in real-world

scenarios, we simulate diverse environments by reconstructing the

distribution of users’ historical interactions.

In this work, we propose a novel solution from the perspective of

invariant learning. Specifically, we propose a framework Invariant
Learning forDistribution Shifts in SEquential RecommendAtion (IDEA)
to achieve robust sequential recommendation. IDEA consists of

two modules, the environment simulation module for simulating

more diverse environments that mimic real-world scenarios and

the invariance-based optimization module for capturing users’ in-

variant preferences. Specifically, in the environment simulation

module, we apply subsequence extractors to systematically remain

the interactions that reflect users’ stable preferences. To extend

the reconstructed training data to unseen distributions, the ex-

tracted subsequences are fed into subsequence mixup to generate

sequences, which we refer to as environments. In invariance-based

optimization stage, IDEA employs the invariant optimization objec-

tive on simulated heterogeneous environments to learn invariant

user preferences. To further enhance the diversity of environments,

IDEA integrates an adversarial training strategy, enabling the model

to explore potential environments and improving its robustness to

unseen distributions. Notably, IDEA is a model-agnostic framework,

making it applicable to a wide range of sequential recommenda-

tion models without being tied to specific architectures. Extensive

experimental results on three public datasets validate the superior

performance and generalization capability of IDEA.
We summarize the contributions of this work as follows: (1) We

investigate distribution shifts in sequential recommendation from

an invariance perspective, and propose a model-agnostic robust

sequential recommendation framework IDEA to enhance model

robustness. (2) IDEA first simulates potential environments with

the subsequence extractors and uses mixup method to expand envi-

ronments, then learns stable user preferences via invariance-guided

optimization. To further enhance model generalization under poten-

tial test distribution, IDEA employs an adversarial training strategy

to promote environment diversity. (3) We conduct experiments on

several benchmarks, theoretical analysis and extensive experiments

validate the effectiveness and compatibility of our proposed IDEA.
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2 Related Works
2.1 Sequential Recommendation
In recent years, sequential recommendation has attracted signif-

icant attention due to its focus on modeling the dynamic nature

of user behavior. Unlike traditional methods like collaborative or

content-based filtering, sequential recommendation captures se-

quential dependencies in user actions, evolving preferences, and

shifting item popularity, enabling more accurate and context-aware

recommendations [39].

In the early stages of development, sequential recommenda-

tion was largely driven by Markov chain-based models [18, 33].

These approaches primarily focused on modeling the immediate

item-to-item transition probabilities between consecutive items

but struggled with capturing longer-term patterns. With the ad-

vent of deep learning, neural networks provided a powerful tool

to overcome these limitations, enabling more expressive model-

ing of sequential behaviors [19, 23, 25, 36, 37, 45]. GRU4Rec [19]

introduced GRUs to sequential recommendation, effectively cap-

turing long-term dependencies and complex patterns. Caser [37]

leverages CNN to capture the item transition patterns. To better

leverage the history information, attention-based models like SAS-

Rec [23] and BERT4Rec [36] improved sequential recommendation

by focusing on the most relevant parts of sequences but suffered

from computational inefficiencies with long sequences. To address

this, recent methods like Mamba4Rec [25] leverages state space

models for efficient long-sequence modeling, improving scalability

and performance.

2.2 Robust Sequential Recommendation
While these models have succeeded, they assume training and

testing data share the same distribution. However, real-world user

preferences are diverse and dynamic, causing distribution shifts

that often undermine performance.

To enhance robustness and improve generalization in sequen-

tial recommendation, researchers have proposed several SOTA

techniques [8, 11, 12, 42, 46, 50, 52]. Inspired by contrastive learn-

ing, CL4SRec[46] and ICL[8] design auxiliary contrastive tasks

to improve the learning of users’ sequential features. Distribu-

tionally Robust Optimization [42, 50, 52] aims to mitigate per-

formance degradation under distributional shifts by prioritizing

hard-to-predict or underrepresented samples, ensuring more stable

predictions across different user groups. Additionally, uncertainty

modeling [11, 12, 28] addresses the limitations of deterministic em-

beddings by representing dynamic user interests using stochastic

Gaussian distributions. For instance, STOSA [12] employs trans-

formers to jointly model mean and covariance embeddings, effec-

tively capturing the inherent uncertainty in user behaviors and

mitigating the effects of ambiguous or noisy interaction data.

Despite these advancements, existing methods still exist limita-

tions when generalizing to unseen test domains. Current strategies

for enriching training data often lack effective guidance or are con-

strained by the training data itself. In particular, many approaches

rely on patterns observed in the training data, such as item co-

occurrence statistics, which may no longer hold when distributions

shifts. To address these limitations, IDEA leverages invariant learn-

ing to encourage the model to capture stable user preferences,

enabling more reliable recommendations in dynamic scenarios.

2.3 Invariant Learning
Invariant learning seeks to learn stable representations that re-

main robust across heterogeneous environments, aiding out-of-

distribution (OOD) generalization. A common example of image

recognition is that in the training set, cows are predominantly ob-

served on green grasslands, whereas camels typically appear in

yellow deserts. However, the test set suffers distribution-shifted

instances when cows in deserts or camels on grasslands. By con-

structing environments where animals appear under different back-

grounds, invariant learning imposes an invariance penalty on ERM

loss across environments to encourage the model to learn invariant

features of animals. Techniques such as IRM [1] and REx [24] opti-

mize performance via regularization across environments, while

EIIL [10] and HRM [26] automatically identify and split environ-

ments in the absence of explicit labels. These methods have been

applied successfully to image classification, graph learning, and

natural language processing. However, applying such automatic

environment splitting techniques directly to sequential recommen-

dation remains challenging. Unlike static data scenarios, user be-

haviors are temporally continuous and context-dependent, while

distribution shifts are often driven by complex latent factors (e.g.,

sudden interest shifts or external events), which existing methods

struggle to disentangle without explicit guidance.

In recommendation systems, invariant learning has shown po-

tential in addressing challenges such as OOD generalization [30]

and denoising [49]. Works like InvPref [41] apply invariant learn-

ing to collaborative filtering to mitigate selection bias and improve

debiasing. InvRL [21] and Milk [2] focus on multimedia recommen-

dations, learning invariant multimodal representations for better

robustness and accuracy. KGIL [40] enhances recommendations by

capturing invariant knowledge graph subgraphs. Our work builds

on these advancements by tailoring invariant learning specifically

for sequential recommendation. By focusing on capturing user

preferences that persist across diverse temporal and contextual en-

vironments, we aim to enhance sequential recommendation models’

generalization to new scenarios.

3 Preliminaries
3.1 Sequential Recommendation
Notations. Suppose we have a user setU and an item setV , where

|U| and |V| denote the number of users and items, respectively.

We represent 𝑢 ∈ U and 𝑣 ∈ V as specific instances of a user and

an item. The users’ historical behaviors are chronologically ordered

and organized into an interaction sequence set S = {𝑆𝑢 | 𝑢 ∈ U}.
The interaction sequence of user 𝑢 is 𝑆𝑢 = {𝑣𝑢

1
, 𝑣𝑢

2
, · · · , 𝑣𝑢

𝑇
} , where

𝑣𝑢𝑡 is the item interacted at the timestamp 𝑡 and𝑇 denotes the length

of the sequence. We utilize an item embedding matrix I ∈ R |V |×𝑑

to represent items, where 𝑑 is the latent dimensionality.

Problem Formulation. Formally, given {U,V,S}, sequential rec-
ommendation aims to learn a model 𝑓𝜃 , which focuses on predicting

the most possible item which the user 𝑢 will interact with at the

timestamp 𝑇 + 1 based on his/her current interests.

In general, a sequential recommender generally consists of fol-

lowing three key components:

• Embedding Layer. In embedding layer, given a user’s interaction

sequence 𝑆𝑢 , we transform users’ sequences in fixed length 𝐿 and
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retrieve the input embedding E ∈ R𝐿×𝑑 from the item embedding

matrix I.
• Sequence Encoder. Sequence encoder takes input embedding

and learns the relationship between items in the historical interac-

tion sequences. Different sequential recommendation models em-

ploy distinct sequence encoders, RNN based (e.g., GRU4Rec [19]),

self-attention based (e.g., SASRec [23]), and Mamba based (e.g.,

Mamba4Rec [25]) are widely used.

• Prediction Layer. After the sequence encoder has adaptively

modeled the item transition patterns, we feed its output into a

prediction layer to leverage encoded sequential representation

to generate relevance scores for candidate items, typically using

inner-product layer.

Typically, the model is trained using Empirical Risk Minimization

(ERM), which minimizes global risk by optimizing the expected loss

over the observed distribution P𝑡𝑟𝑎𝑖𝑛 :

𝜃∗ = argmin

𝜃

ES∼P𝑡𝑟𝑎𝑖𝑛 L (𝑓𝜃 (𝑣 | S)) , (1)

where 𝑓𝜃 (𝑣 |S) denotes the prediction score of potential next item.

In practice, we use BCE loss [3, 20]:

LBCE = −
∑︁
𝑣∈V+

log𝜎 (𝑓𝜃 (𝑣 | S)) −
∑︁

𝑤∈V−
log(1 − 𝜎 (𝑓𝜃 (𝑤 | S)))

(2)

whereV+
andV−

represent the dataset of positive and negative

samples respectively, 𝜎 denotes the sigmoid function, and we use

the ERM loss L𝑒 to simplify notation.

3.2 Distribution Shifting Issue
Despite significant advancements in sequential recommendation

models, these models are typically trained under the ERM paradigm,

which assumes that both the training and test data are Indepen-

dent and Identically Distributed (IID), implying that P𝑡𝑒𝑠𝑡 = P𝑡𝑟𝑎𝑖𝑛 .
However, this idealized assumption is often difficult to satisfy in

real-world scenarios, where users’ preferences and item popularity

are dynamic due to temporal changes or contextual factors, lead-

ing to P𝑡𝑒𝑠𝑡 ≠ P𝑡𝑟𝑎𝑖𝑛 , i.e., Out-of-Distribution (OOD) issues. These

OOD phenomena can result in a degradation in model performance

when the distribution changes. We expect to ensure that the model

remains effective in the presence of such distributional shifts.

Our goal is to develop an optimal sequential recommendation

model capable of generalizing well to the test distribution P𝑡𝑒𝑠𝑡 ,
where P𝑡𝑒𝑠𝑡 ≠ P𝑡𝑟𝑎𝑖𝑛 . Formally, the optimization objective is to

minimize the loss L𝑒 (𝑓𝜃 (𝑣 | S), where the expectation is taken

over the unknown test data distribution P𝑡𝑒𝑠𝑡 :

argmin

𝜃

ES∼P𝑡𝑒𝑠𝑡 L𝑒 (𝑓𝜃 (𝑣 | S)) . (3)

3.3 Invariant Learning
Invariant Learning is a mechanism encourages models to capture

representations that maintain predictive ability by penalizing per-

formance differences across heterogeneous environments.

Formally, we suppose that training data D𝑡𝑟𝑎𝑖𝑛 are sampled

from multiple environments E, i.e., D𝑡𝑟𝑎𝑖𝑛 = {𝐷𝑚}𝑚∈E , IL tech-

nique is encouraging representations that remain constant across

environments and label relevance, which can be defined as:

E(𝑌 | 𝑓 (𝑆), 𝐸 =𝑚) = E
(
𝑌 | 𝑓 (𝑆), 𝐸 =𝑚′) ,∀𝑚,𝑚′ ∈ E . (4)

The constraint is termed as Environment Invariance Constraint

(EIC) [10]. The constraint can be incorporated into the ERM opti-

mization objectives via a penalty term [1, 24]:

L𝐼𝑅𝑀 =
∑︁
𝑚∈E

L𝑚𝑒 (𝜃 ) + 𝜆


∇𝜃L𝑚𝑒 (𝜃 )



2
2
(IRM-v1) (5)

L𝑅𝐸𝑥 =
∑︁
𝑚∈E

L𝑚𝑒 (𝜃 ) + 𝜆 Var
({
L1

𝑒 (𝜃 ), . . . ,L𝑚𝑒 (𝜃 )
})

(V-REx), (6)

where 𝜃 denotes the model parameters, L𝑚𝑒 (𝜃 ) denotes the ERM
loss in the environment 𝑚, realized by Equation (2). The perfor-

mance of invariant learning is heavily dependent on the quality

of the environments. In ideal scenarios, the training data can be

explicitly segmented into multiple environments. However, the

lack of explicit environmental labels in sequence recommendation

settings pose a challenge to learning invariant sequential patterns.

4 The Proposed IDEA Framework
4.1 Overview
IDEA aims to learn stable user representations across different en-

vironments, thereby improving generalization. The key problem

IDEA addresses is how to generate multiple high-quality environ-

ments and capture the users’ invariance features from variant envi-

ronments. We implement IDEA with a max-min game. As shown in

Figure 2, it comprises two components: Environment Simulation,
which focuses on constructing diverse environments, and Invari-
ant Optimization, which enforces learning stable preferences

across various environments.

For environment simulation, we introduce 𝐾 learnable subse-

quence extractors that identify and drop unstable interactions under

distribution shifts by evaluating the semantic relevance of inter-

actions. The optimization of the subsequence extractors is guided

by the maximize violations of invariance objectives, ensuring that

it gradually filters out interactions that are highly sensitive to dis-

tribution shifts. Besides, the Mixup operation further extends the

environments to unseen domains, simulating potential test distri-

butions and thus enhancing the model generalization.

For invariant optimization, IDEA involves optimizing two sets of

parameters: parameters of K subsequence extractors {𝜃∗
1
, . . . , 𝜃∗

𝐾
}

and those of the recommendation module 𝜃𝑟𝑒𝑐 . For subsequence

extractors, we aim to maximize the diversity of the generated K

subsequences, ensuring they capture distinct environmental varia-

tions. For the recommendation module, we apply the environment

invariance constraint to minimize differences between generated

environments, thereby enforcing consistent model performance

across varying conditions. Finally, IDEA alternately optimizes these

two modules through adversarial training—enhancing both the

diversity of generated environments and the learning of users’ in-

variant preferences in an iterative manner.

4.2 Environment Simulation
4.2.1 Sequential Recommendation Model Pretraining. In order

to extract meaningful sub-sequences, we first pre-train a base

sequential recommendation model
˜𝑓𝜃𝑟𝑒𝑐 to obtain item embed-

dings. Specifically, we implement sequential recommendation based
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Figure 2: The overall framework of IDEA : subsequence extractions first generate learnablemask, followed by subsequencemixup
generating diverse environments. Environments are then fed into the recommender which are optimized using environment
invariance constraint (EIC) later.

on three representative backbones (GRU4Rec [19], SASRec [23],

Mamba4Rec [25]). Let I denote the pre-trained item embedding

matrix, we encode each input sequence as follows:

E𝑢 = 𝜎
(
𝑖𝑢
1



𝑖𝑢
2



 . . . ∥𝑖𝑢𝑇 ) , (7)

where || denotes concat operation, 𝑖𝑢𝑡 represent the embedding of

item embedding user 𝑢 interacted at timestamp 𝑡 . 𝜎 denotes mean-

pooling operation. We then feed the sequence embedding as input

to activate the subsequence extractor. Next, we introduce how the

extractor works.

4.2.2 Subsequence Extraction. Here, we design 𝐾 independent

subsequence extractors. Specifically, each user sequential repre-

sentation E𝑢 will be associated with a learnable vector p𝑢
𝑘
, the

representation of 𝑘th extracted subsequence 𝑆𝑢
𝑘
is:

E𝑢
𝑘
= E𝑢 ⊙ p𝑢

𝑘
, (8)

which indicates that item 𝑣𝑢𝑡 in 𝑆𝑢 remains if the corresponding

element of 𝑝𝑢
𝑘
is 1 and is masked otherwise. The calculation of p𝑢

𝑘
takes users’ collaborative singles 𝜔𝑘 into consideration as follows:

p𝑢
𝑘
= sigmoid ((log𝛿 − log(1 − 𝛿) + 𝜔𝑘 ) /𝜏) , 𝛿 ∼ Uniform(0, 1),

(9)

where p𝑢
𝑘
is derived from a Bernoulli distribution with the weight

𝜔𝑘 , and we utilize the Gumbel-Softmax [22] reparameterization

trick, allowing gradients to be backpropagated from the probability

space to the parameters of the MLP network, enabling end-to-end

optimization. 𝛿 is a random variable sampled from a uniform distri-

bution and 𝜏 is the temperature hyperparameter, as 𝜏 → 0, p𝑢
𝑘
get

close to binary. 𝜔𝑘 is parameterized via an MLP network Φ𝑘
𝜃
:

𝜔𝑢
𝑘
= Φ𝑘

𝜃

(
𝜎
(
E𝑢

) )
. (10)

Hence, we can define 𝐾 independent environment generators to

generate 𝐾 groups of subsequences named D1.

4.2.3 Subsequence Mixup. In practice, the variability of target

domain shifts is inherently unpredictable, and the environments

derived from the limited training domains are inadequate to en-

compass the full range of potential domains. Consequently, the

model’s generalization capability cannot be ensured. To enable ro-

bust performance in unpredictable test environments, we aim to

extend the training distribution to unseen scenarios. Our key insight

is that users’ interests are diverse. Therefore, the environmental

construction should adhere to two principles: (i) Interest-driven het-
erogeneity: different environments should be dominated by distinct

subsets of user interests, preventing the model from over-relying

on specific interest patterns. (ii) Sufficient environmental diversity:
a broad spectrum of environments must be simulated to enhance

the model’s capacity for generalization. Here, we adopt the mixup

technique [38, 51] to construct more diverse environments.

Mixup is a data augmentation technique that creates new sam-

ples by performing linear interpolation between original samples.

Specifically, we randomly select two subsequences 𝑆𝑖 and 𝑆 𝑗 from

D1 and obtain their sequential representation E𝑖 and E𝑗 using
Equation (7). We generate the mixed representation of E𝑖 and E𝑗 :

E′𝑖 𝑗 = 𝜆E𝑖 + (1 − 𝜆)E𝑗 ,
𝜆 ∼ Beta(𝛼, 𝛼),

(11)

where E′
𝑖 𝑗
represents the mixed representations of 𝑆𝑖 and 𝑆 𝑗 . 𝜆 is

sampled from the Beta distribution [16] with parameter 𝛼 , which

is close to 1. By repeating the above mixup process 𝑁 times, we

obtain 𝑁 distinct environments. Next, we present the optimization

process of the IDEA framework.

4.3 Invariance-based Optimization
4.3.1 Environment Exploration. The purpose of environment sim-

ulation is to construct more diverse environments to serve the

following invariant learning better. To optimize subsequence ex-

tractors for capturing distribution-stable interactions in training

data, we design an environment exploration objective to optimize
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subsequence extractors. Ideal environments should maximize viola-

tions of the invariance principle, thereby maximizing the challenge

of learning stable features. In order to fully explore the item transi-

tion patterns that may be missed by the current model, we update

the parameters of the subsequence extractors by defining the fol-

lowing optimization objective:

𝜃∗
1
, . . . , 𝜃∗𝐾 = argmax

𝜃1,...,𝜃𝐾

Var

({
L𝑛𝑒 : 1 ≤ 𝑛 ≤ 𝑁

})
, (12)

where 𝜃1, . . . , 𝜃𝐾 are the parameters of 𝐾 distinct subsequence ex-

tractors, L𝑛𝑒 is the empirical risk in environment 𝑛, calculated by

Equation (2) in practice. It encourages the subsequence extractors to

exploremore challenging environments bymaximizing the variance

of the empirical risk across 𝑁 environments. In our implementation,

this optimization alternates with the following overall optimization.

Specifically, we define 𝑇 iterations as a cycle.

4.3.2 Overall Optimization. After obtaining 𝑁 challenging en-

vironments, we retrain the recommendation module in each en-

vironment with the ERM optimization objective, combined with

the invariance-based regularizer to encourage the model to capture

stable preferences.

The overall optimization objective is defined as follows:

𝜃∗𝑟𝑒𝑐 = argmin

𝜃𝑟𝑒𝑐

1

𝑁

𝑁∑︁
𝑛=1

L𝑛𝑒 + 𝛽Var
({
L𝑛𝑒 : 1 ≤ 𝑛 ≤ 𝑁

})
, (13)

where 𝜃𝑟𝑒𝑐 is the parameter of recommendationmodule. The second

term encourages the invariant risk minimization, as formulated in

Equation (6). 𝛽 is a hyperparameter.

The introduction of the invariance regularizer encourages the

model to learn stable item transition relationships that are indepen-

dent of distributional shifts, leading to stable item representations.

In this way, the model gains stronger adaptability to varying envi-

ronments. During the inference phase, by leveraging the learned

stable representations, the model is able to maintain high predic-

tion accuracy even in the presence of distributional drift, thereby

enhancing its robustness and generalization.

4.4 Theoretical Analysis
In this section, we analyze from the perspective of domain gener-

alization to prove the validity of IDEA. Our analysis demonstrates

that implementing IDEA effectively reduces the upper bound of

the error optimization function for generalization, thereby proving

its effectiveness. Given P as the source domain distributions and

Q as the target domain distribution, previous studies [35, 48] have

proved the following theory:

Theorem 4.1. Let X be a space and letH be a class of hypotheses
corresponding to this space. Let Q and {P𝑖 }𝑘𝑖=1 be distributions over
X and let {𝜑𝑖 }𝑘𝑖=1 be a collection of non-negative coefficients with∑
𝑖 𝜑𝑖 = 1. Let the object O be a set of distributions such that for every

S ∈ O the following holds.∑︁
𝑖

𝜑𝑖𝑑HΔH (P𝑖 , S) ≤ max

𝑖, 𝑗
𝑑HΔH

(
P𝑖 , P𝑗

)
, (14)

where 𝑑HΔH measures distributional differences between P𝑖 and P𝑗 .

Then, for any ℎ ∈ H , the following equation holds:

𝜀Q (ℎ) ≤ 𝜆𝜑+
∑︁
𝑖

𝜑𝑖𝜀P𝑖 (ℎ)+
1

2

min

S∈O
𝑑HΔH (S,Q)+1

2

max

𝑖, 𝑗
𝑑HΔH

(
P𝑖 , P𝑗

)
,

(15)

where 𝜆𝜑 =
∑
𝑖 𝜑𝑖𝜆𝑖 and each 𝜆𝑖 is the error of an IDEA l joint

hypothesis for P and P𝑖 .

From the theory, the upper bound of the model’s error in the

unseen target domain Q can be expressed as Equation (15). A lower

value of 𝜀Q (ℎ) indicates better generalization performance of the

model. Then, we analyze each term of Equation (15).

The first term is too small compared to the generation error to

be omitted in practice. The second term is the convex combination

of the source errors controlled by the ERM. For the third term,

1

2
minS∈O 𝑑HΔH (S,Q) is the minimum pairwise H-divergence be-

tween S and Q, we continuously increase the diversity of envi-

ronment O to ensure that it contains sub-distribution S that is

increasingly closer to the unknown test distribution. In IDEA , dur-

ing the Environment Simulation process, we use 𝐾 subsequence

extractors to remove the potential noise interactions and recon-

struct the training distribution. Besides, we apply subsequence

mixup to mix the extracted subsequences pairwise to form 𝑁 di-

verse environments, successfully expanding the training distribu-

tion to the unseen test distribution. Additionally, we further en-

courage distribution differences between different environments

through Equation (12). The final term is the maximum differences

among training environments, this term is optimized via Equation

(13) during the Invariant Optimization phase, which reduces

max𝑖, 𝑗 𝑑HΔH
(
P𝑖 , P𝑗

)
by penalizing the differences in empirical

risks across environments. Through adversarial training, IDEA it-

eratively optimizes each term in Equation (15), thereby reducing

the upper bound of the error in the target domain. As a result,

IDEA achieves better robustness.

4.5 Model Discussion
4.5.1 Space Complexity. As illustrated in Algorithm 1, the pa-

rameters of IDEA are composed of two parts: sequential recom-

mender parameters 𝜃𝑟𝑒𝑐 and environment simulation parameters

{𝜃1, . . . , 𝜃𝐾 }. Compared to backbone models, the extra parameters

are those of the subsequence extractors, implemented as MLPs. Be-

cause 𝜃𝑘 are the shared for all sequences, the additional parameters

of IDEA is affordable.

4.5.2 Time Complexity. The overall time complexity stems from

two key components: (i) Environment Simulation. The complex-

ity of O(𝐾 |S|𝑑 + 𝑁 ) arises from two stages: Subsequence Extrac-
tion: 𝐾 subsequence extractors independently process each item’s

interaction sequence of length |S|. For each position in the se-

quence, a probability is computed to identify critical subsequences,

incurring O(𝐾 |S|𝑑) complexity, where 𝑑 denotes the dimensional-

ity of sequence representations. Subsequence Mixup: 𝑁 synthetic

environments are created via mixup operations on the extracted

subsequences, contributing O(𝑁 ) complexity. Parameters are up-

dated every𝑇 iterations, effectively mitigating computational costs.

Experiments show optimal performance with 𝐾 = 3 and 𝑁 = 4,

confirming minimal overhead from environment generation. (ii)
Invariant Optimization. The complexity of O(𝑁 |S|𝑑) originates
from optimizing invariant representations across all environments.
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Algorithm 1: The Training Stage of the Proposed IDEA

Data: User set𝑈 , Item set 𝑉 , Interaction sequence set S
Result: Optimal robust sequential recommender 𝑓 ∗

𝜃𝑟𝑒𝑐
(·)

1: Initialize all parameters;

2: while not converged do
3: Embed items {𝑠𝑢 } to get the sequence initial

representations via Eq.(7);

// Environment Simulation
4: Calculate p𝑘𝑢 and extract the subsequence via Eq.(8-10);

5: Mixup the extracted subsequence to generate diverse

environments via Eq.(11);

// Invariance-based Optimization
6: for each environment 𝑛 do
7: Model sequential representation with backbone model;

8: Compute ERM loss of each environment L𝑛𝑒 via Eq.(2);

9: end for
10: Optimizing 𝜃𝑟𝑒𝑐 with the overall loss L via Eq.(13);

11: Alternatively optimize {𝜃1, . . . , 𝜃𝐾 } via Eq.(12) every 𝑇
batch;

12: end while
13: return the optimal robust sequential recommender 𝑓 ∗

𝜃𝑟𝑒𝑐
(·)

Specifically, for each of the 𝑁 environments, the method enforces

invariance over all |S| interaction sequences with 𝑑-dimensional

representations. Considering the performance-complexity trade-off,

the incurred costs are justifiable, as validated by empirical efficiency

and robustness gains.

Table 1: Statistics of the experiment datasets.

Dataset Users Items Interactions Avg. Length

Beauty 22,364 12,102 198,502 8.87

Sports 35,599 18,358 296,337 8.32

MovieLens-1M 6,041 3,417 999,611 165.47

5 Experiments
In this section, we conduct experiments to demonstrate the effec-

tiveness and generalization of our proposed IDEA and to reveal the

reasons. We focus on the following important research questions:

• RQ1: How does IDEA compare with SOTA robust sequential

recommendation frameworks

• RQ2: How effectively does IDEA mitigate performance degrada-

tion in distribution shifts?

• RQ3: How do some important designs and hyperparameters

affect the model?

• RQ4: How do different components in our framework contribute

to the final performance?

5.1 Experimental Settings
5.1.1 Datasets. To ensure a comprehensive evaluation, we utilize

three publicly available recommendation datasets:

• Beauty and Sports [31]: These are subdatasets of the Amazon

datasets, which include product reviews and purchase records

categorized by top-level products. "Beauty" covers beauty product

purchases, while "Sports" focuses on sports and outdoor items.

• MovieLens-1M [17]: It is a widely used benchmark dataset for

recommendation systems, containing 1 million movie ratings

along with user demographics and movie genres.

For all datasets, we utilize 5-core filtering [44], and sort interactions

chronologically. The last item of each sequence is used for testing,

the second-to-last item for validation, and all remaining items for

training. The detailed statistics for each dataset after preprocessing

are summarized in Table 1.

5.1.2 Backbones. We apply it to three representative vanilla se-

quential recommendation models:

• GRU4Rec [19]: It is a representative RNN-based sequential rec-

ommendation model which uses GRUs to control the RNN units

to summarize all previous interactions through the hidden state.

• SASRec [23]: It is a transformer-based sequential recommenda-

tionmodel which uses the self-attention tomodel the relationship

between any two items in a long sequence.

• Mamba4Rec [25]: It improves inference efficiency in transformer-

based models by adopting selective SSMs [15].

5.1.3 Baselines. We compare our approach with the following

sequential recommendation baselines, since these methods are all

model agnostic, we implemented them on above backbone models.

• CL4SRec [46]: It leverages a contrastive learning framework to

generate self-supervised signals. It employs three data augmen-

tation methods to enrich training distribution.

• STOSA [12]: It uses stochastic Gaussian distribution to model

the uncertain embedding of the item embeddings, which takes

into account the randomness of item conversion.

• RSR [52]: It utilizes the idea of distributionally robust optimiza-

tion (DRO) to optimize the worst-case distribution of training

data. By reweighting the samples, it simulates different training

distributions and thus overcomes potential distribution shifts.

• DROS [50]: It generalizes training data to a nominal distribution

in a dynamic environment and seeks robust recommendations

within a robust radius of the nominal distribution.

5.1.4 Implementation details. We implement all methods with

Python 3.8 and PyTorch 2.4.1. We use Adam optimizer, the learning

rate is tuned as 0.001 and the batch size is set as 1024.We empirically

set the temperature coefficient 𝜏 = 0.1, and the embedding size

𝑑 = 64 for all datasets. To maintain a consistent comparison, we

adopt the full-ranking strategy across all experiments. For each user,

items included in the dataset are deemed positive, while others are

considered negative. Ultimately, we present the average outcomes

for all users within the testing set. We evaluate the model using

widely used metrics, such as Recall and NDCG, by comparing the

top-10 and top-20 recommended items with the ground truth For

hyperparameters, the environment number 𝑁 as well as the weight

of the invariant constraint term 𝛽 , we carefully search the best

parameters for each dataset and report detailed comparisons. For

all baselines, we refer to original parameters for fair comparisons.

5.2 Overall Performance (RQ1)
To verify the effectiveness of our proposed IDEA, we compare

IDEA with competing methods. The overall comparison results

are presented in Table 2, yielding the subsequent observations:
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Table 2: Overall comparison between IDEA and baselines. "Vanilla" represent the base sequential recommendation model. We
have implemented both the baseline and our method on different base models. "R" and "N" are the abbreviations for Recall and
NDCG respectively.

Backbones Methods Beauty Sports ML-1M
R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20

GRU4Rec

Vanilla 0.0591 0.0851 0.0326 0.0394 0.0303 0.0469 0.0153 0.0195 0.2366 0.3422 0.1241 0.1509

CL4SRec 0.0598 0.0878 0.0331 0.0399 0.0322 0.0515 0.0166 0.0214 0.2430 0.3432 0.1282 0.1534

STOSA 0.0605 0.0899 0.0339 0.0407 0.0345 0.0528 0.0182 0.0228 0.2414 0.3425 0.1243 0.1517

RSR 0.0593 0.0881 0.0337 0.0402 0.0353 0.0537 0.0183 0.0229 0.2490 0.3512 0.1346 0.1602

DROS 0.0617 0.0887 0.0343 0.0411 0.0406 0.0583 0.0212 0.0268 0.2454 0.3510 0.1300 0.1565

IDEA 0.0660 0.0983 0.0365 0.0431 0.0475 0.0644 0.0305 0.0281 0.3051 0.3602 0.1432 0.1613

SASRec

Vanilla 0.0696 0.1048 0.0340 0.0431 0.0408 0.0603 0.0216 0.0270 0.2720 0.3707 0.1562 0.1811

CL4SRec 0.0806 0.1154 0.0399 0.0487 0.0479 0.0700 0.0226 0.0282 0.2881 0.3915 0.1626 0.1897

STOSA 0.0834 0.1137 0.0373 0.0455 0.0462 0.0678 0.0223 0.0281 0.2876 0.3843 0.1664 0.1907

RSR 0.0838 0.1144 0.0415 0.0499 0.0477 0.0684 0.0222 0.0278 0.2882 0.3919 0.1711 0.1950

DROS 0.0844 0.1151 0.0416 0.0503 0.0480 0.0704 0.0227 0.0283 0.2959 0.3940 0.1698 0.1945

IDEA 0.0851 0.1190 0.0464 0.0545 0.0490 0.0735 0.0232 0.0290 0.3043 0.4001 0.1732 0.2038

Mamba4Rec

Vanilla 0.0721 0.0978 0.0433 0.0506 0.0405 0.0605 0.0217 0.0256 0.3053 0.3856 0.1779 0.1951

CL4SRec 0.0727 0.1033 0.0435 0.0513 0.0410 0.0617 0.0230 0.0288 0.3062 0.3886 0.1781 0.1986

STOSA 0.0758 0.1066 0.0442 0.0514 0.0426 0.0621 0.0236 0.0276 0.3073 0.3885 0.1800 0.1959

RSR 0.0739 0.1058 0.0436 0.0517 0.0415 0.0612 0.0237 0.0287 0.3072 0.3889 0.1813 0.1965

DROS 0.0759 0.1071 0.0443 0.0521 0.0417 0.0613 0.0231 0.0280 0.3074 0.3891 0.1851 0.2002

IDEA 0.0801 0.1093 0.0462 0.0548 0.0427 0.0629 0.0245 0.0295 0.3082 0.3906 0.1879 0.2101

• Among the different base sequence recommendation models,

we find that Mamba4Rec is basically superior to GRU4Rec and

SASRec on both sparse and dense datasets. The reason might be

that Mamba4Rec employs the selective state space model (SSMs),

which introduces an input-dependent selection mechanism that

effectively extracts key information and filters out noise based

on the input data. Additionally, the incorporation of techniques

such as residual connections and layer normalization further

enhances the model’s sequence modeling capability, especially

on long sequences.

• All baseline methods outperform naive sequential recommen-

dation models, emonstrating their effectiveness. Among them,

DRO-based frameworks have shown greater improvements com-

pared to other baselines, with DROS being the best-performing

method. This performance improvement can be attributed to the

considering the dynamics of data in the training process, rather

than statically relying on previous interactions in the training

data. CL-based methods have only achieved marginal improve-

ments in some cases, suggesting their limitations of manually

designed data augmentation methods without guidance. The

STOSA method for modeling uncertainty provides overly conser-

vative estimates of the extent to which the distribution of future

test data will be shifted, and thereby has performance limitations.

• Encouragingly, IDEA consistently outperforms the baselines across

different datasets, evaluation metrics and base models. Specifi-

cally, on the Amazon Beauty, IDEA improves the NDCG@20 of

the base models GRU4Rec, SASRec, and Mamba4Rec by 9.39%,

26.45%, and 8.30%, respectively. Compared to the strongest base-

line, DROS, the improvements are 4.87%, 8.35%, and 5.18%. These

results demonstrate the generalization and effectiveness of IDEA.

A closer examination reveals that whilemost current self-supervised

learning techniques rely on random data augmentation to gener-

ate views, IDEA implements learnable environment simulators

by adversarially maximizing the variance in invariant learning

objectives, enabling the exploration of diverse and informative

distributions. The invariance penalty endows our model with an

enhanced ability to capture stable user preferences.

5.3 Robustness to Distribution Shifts (RQ2)
Motivation & Settings To further assess the robustness of our

model to distributional changes, we simulate distributional shifts

by constructing a semi-synthetic dataset following [52]. Specifi-

cally, we keep the testing set, and simulate distribution shifts by

replacing real items in the training sequences with some fake items

(which will not appear in the test set) with various proportions

𝜆 ∈ {0, 0.05, 0.1, 0.2}, artificially constructing unstable interactions

under distribution shifts. 𝜆 = 0 means using the original training

data. We focus on the improvement of our framework on base

sequential recommenders (we choose the best performing model:

Mamba4Rec), and omit the other baselines in the final results for

simplicity.

Results As illustrated in Figure 3, we exhibit the recommendation

performances under different fake injection ratio, where the hor-

izontal axis represents the fake item injection ratio, the vertical

axes denote NDCG@20 and relative improvements compared with

Mamba4Rec. From the results presented in Figure 3, we can see:

• Increasing the value of 𝜆means a larger distribution shift between

the training and test sets. We can find that as the proportion of

injected fake items increases, all models exhibit a decline in per-

formance. It also demonstrates the challenge that distribution
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Figure 3: Performance comparison under different distribu-
tion shifts. For simplicity, we remove “@10” in the metrics.

shifting poses to model generalization. Fake items in the user

sequences during training may mislead the model into learning

incorrect sequence patterns, which then results in poor perfor-

mance on the test set, where the distribution has shifted.

• For each noise ratio, our framework consistently outperforms

competing models. Comparing the performance improvement of

our framework for different values of 𝜆, we find that the improve-

ment is more significant on datasets with larger distributional

skews. Notably, our NDCG@20 on the ML-1M dataset improves

by 5.44% (when 𝜆 = 0.05) and 8.75% (when 𝜆 = 0.1) and 10.96%

(when 𝜆 = 0.2), respectively, when compared to the backbone

(MambaRec). These improvements demonstrate the effectiveness

of our framework under different noise ratios.
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Figure 4: Impact of the number of environments 𝑁 and in-
variance coefficient 𝛽 .

5.4 Hyper-Parameter Sensitivities (RQ3)
We next analyze the influence of two core parameters in IDEA:
the environment number 𝑁 and the invariance constraint weight

𝛽 which controls the trade-off between out-of-distribution explo-

ration and prediction accuracy. As shown in Figure4, we conduct

careful grid search of (𝑁, 𝛽) on three datasets. We observe that

IDEA reaches the best performance when 𝑁 = 3, 𝛽 = 0.01 on Ama-

zon Beauty, and 𝑁 = 4, 𝛽 = 0.001 on ML-1M respectively. The

hyperparameter 𝛽 has a direct impact on the model. If 𝛽 is too

high, the model generates distributions beyond the training range,

introducing harmful noise. If too low, it prioritizes prediction over

sufficient out-of-distribution exploration. Therefore, a tailored 𝛽 is

essential for balancing these factors and must be carefully tuned

for optimal performance.

Table 3: Ablation study of IDEA.

Models Beauty Sports ML-1M

R@10 N@10 R@10 N@10 R@10 N@10
IDEA w/o BOTH 0.0721 0.0978 0.0405 0.0605 0.3053 0.3856

IDEA w/o EE 0.0790 0.1091 0.0419 0.0621 0.2854 0.3861

IDEA w/o IL 0.0774 0.1076 0.0426 0.0627 0.2833 0.3859

IDEA 0.0801 0.1104 0.0427 0.0629 0.3082 0.3906

5.5 Ablation Study (RQ4)
To exploit the effectiveness of each component of our proposed

IDEA, we use Mamba4Rec as backbone model and conduct abla-

tion study on three datasets. As shown in Table 3, IDEA-w/o EE
denotes the variant without environment exploration, performing

invariant learning only on the original generated environments.

IDEA-w/o IL refers to maintaining the environment simulation

phase, but training under the ERM paradigm. IDEA-w/o BOTH
means that we remove both modules at the same time, thereby de-

grading to backbone model. We can observe that each component

of IDEA contributes to the final superior performance. First, remov-

ing environment exploration significantly degrades performance,

underscoring its essential role in promoting invariant learning.

Since the environment remains unknown to the model, the absence

of this component prevents the model from effectively capturing

cross-environment invariant item transition patterns, which could

potentially lead to suboptimal performance. Second, performance

gap between IDEA and w/o IL highlights the effectiveness of invari-

ant learning in guiding the stable representation learning process

and boosting the model’s generalization.

6 Conclusion
In this paper, we introduce IDEA, a novel framework that aims to

enhance generalization of sequential recommendation under the

distribution shifts scenario from an invariant learning perspective.

By modeling diverse environments and incorporating invariant

learning, IDEA enables models to capture robust item represen-

tations that remain valid across different data distributions. The

framework combines learnable environment generation strategy

with an optimization process that focuses on discovering invari-

ant prediction mechanisms to ensure adaptability and robustness.

Theoretical analyses support the soundness of our approach, while

extensive experiments demonstrate that it outperforms existing

methods, achieving consistent improvements in both regular and

out-of-distribution settings. Our work highlights the potential of

using invariant learning to address real-world challenges in sequen-

tial recommendation, providing a scalable and effective solution to

improve robustness and generalization in dynamic environments.
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